
OESS API Reference
v.1.2.1

API overview
OESS provides a web-service API for programmatic interaction. This API, which is also used by the user-

facing OESS application, is divided into a number of services (each with its own URL), each of which in

turn provides one or more methods; each method represents an operation that can be performed. The

API can be used to provision, edit, and decommission circuits; retrieve configuration and operational

information about a circuit or the network in general; and view or modify administrative state.

The following is documentation for OESS-specific interfaces not involving administrator-level tasks. In

addition to the services documented here, there are administrative services, which follow the same

general conventions as below, and interfaces for use by NSI-based provisioning agents (and formerly

OSCARS – there are references to OSCARS below as a result), which follow different conventions.

General API description

How to get help
The following resources have more information:

https://globalnoc.iu.edu/sdn/oess.html — the OESS homepage

http://github.com/GlobalNOC/OESS — the latest code, as well as development history and release tags

oess-users@globalnoc.iu.edu — the mailing list, if you need to discuss something with a human or

haven’t been able to answer your question with the previous resources

Request format
All services may be called with either GET or POST requests. In the case of a GET request, parameters

should be encoded as URL arguments. In the case of a POST request, the parameters should be passed in

as application/x-www-form-urlencoded data. Which method on the service to run is indicated by

the special method parameter. In some methods, a parameter may be list-valued; this is represented by

multiple instances of the parameter in the URL or POST data.

Example URL for a GET request calling the get_circuit_history method:

https://<hostname>/oess/services/data.cgi?method=get_circuit_history&circuit_id=999

Response format
All methods return JSON-formatted data; the top-level item is an object. Most methods use the

following convention (with the method in measurement.cgi being a notable exception):

If an error occurs, the error field of the top-level object will be set, and there may be explanatory text

in the error_text field; if the method’s operation was successful, any results will be put in the

results field.

https://globalnoc.iu.edu/sdn/oess.html
http://github.com/GlobalNOC/OESS
mailto:oess-users@globalnoc.iu.edu

In the example responses in this document, there are a number of // C++-style comments shown; these

are not actually part of the returned response, but serve to help explain the meaning of fields in the

returned object.

Example of a response for a successful operation:

{

 "results": [// array of users’ information

 {

 "email_address": "johndoe@grnoc.iu.edu",

 "user_id": "5111" // numeric OESS user ID

 },

 {

 "email_address": "janedoe@grnoc.iu.edu",

 "user_id": "5122"

 }

[...] // more elements of the array elided for conciseness

]

}

Example of an error response:

{

 "error_text": "get_existing_circuits: required input parameter workgroup_id is missing ",

 "error": 1,

 "results": null

}

OESS concepts and data types

Users
An OESS user is an entity that performs operations in the OESS system. A user has a unique numeric user

ID. Zero or more usernames, as used to authenticate to the web server (see “Authentication” below),

are mapped to an OESS user; no username may map to more than one OESS user.

Workgroups
Every OESS user should be a member of at least one workgroup; it is possible for a user to be a member

of multiple workgroups. Many operations (e.g., creating a circuit) are performed in the context of a

single workgroup, so a particular workgroup must be specified for the operation. Once a user has logged

in to the OESS application, they are asked to select a workgroup to work under; people using the API will

generally need to do something similar, either in a configuration file or as a run-time argument. Each

workgroup may own zero or more endpoint interfaces on the network; no interface is owned by more

than one workgroup.

A workgroup has a name (a string; unique within an OESS instance) and an ID (a unique integer). The

workgroup ID is used in numerous methods and allows OESS to determine which pieces of data the user

is allowed to see and which operations the user may perform.

A workgroup also has a type, which is one of normal (the vast majority of workgroups in a typical OESS

instance), admin (usually only one workgroup), or demo (usually zero or one workgroup). A workgroup’s

type is related to the operations that may be performed using that workgroup; for more details, see

“Allowed operations” below.

Nodes
Nodes are switching elements on the network. Each has a unique name (a string) and a unique integer

ID; one or the other is used to specify a node, depending on the method in question.

A node may be configured to be used with OpenFlow, with MPLS (typically controlled using NETCONF),

or both.

Interfaces
Interfaces are network interfaces on nodes. Each has a name (possibly duplicated on other nodes, but

unique for its associated node; a string) and an integer ID (unique in the OESS instance). Depending on

the method, an interface may be specified by its ID or by a (node name, interface name) pair. A trunk

interface is an interface that is an endpoint of a link (see next); an endpoint interface is an interface that

is not a trunk interface, and marks the boundary of the OESS-managed network (typically, an end system

or a different network is on the other side of the boundary). An interface may be owned by a (single)

workgroup; except for a few exceptional cases, trunk interfaces do not need to be owned by a

workgroup. An interface is OpenFlow-based, MPLS-based, or both. If the same (on-node) interface is

accessible from both OpenFlow and MPLS, it may show up in OESS as two interfaces, depending on the

details of the node’s interface naming scheme and OpenFlow/MPLS implementations.

An interface has an associated list of ACL entries, which the owning workgroup of an interface use to

allow or deny workgroups (including itself!) the right to terminate circuits at a certain range of VLAN

tags on the interface. See the add_acl method of workgroup_manage.cgi for more details.

Links
Links are connections between nodes; they connect interfaces on different nodes, and are auto-

discovered by OESS (though require confirmation by the administrators to be used). Each has a unique

name (a string) and a unique integer ID. Links are OpenFlow-based MPLS-based, or both.

Circuits
Circuits are what most users are ultimately concerned with. A circuit consists of a number of endpoints,

specified by (interface, VLAN tag) pairs (the special VLAN tag value ‒1 refers to untagged frames), and

some paths, each a set of links over which circuit traffic will travel: a primary path (optional for MPLS-

based circuits) and an (optional) secondary path for link-level resiliency. (Behind the scenes, MPLS-based

circuits also have a tertiary path, which is used if the primary and secondary paths (if specified) are

unusable.)

A circuit has a unique name (a string) and a unique integer ID. It can also be assigned an external

identifier, which is used by OESS to store circuit identifiers used by OSCARS and NSI agents. A circuit is

either OpenFlow-based or MPLS-based – never both.

Numbers
Numbers are sometimes represented in response fields as strings: comments will generally refer to the

value in question being numeric.

Booleans
Boolean values are represented in method parameters and response fields as 0 (false) or 1 (true). In

responses, these may be the strings “0” and “1”, instead of the numbers 0 and 1.

Enumerations
Some method parameters and output fields may only have a limited number of values. This is

represented in the parameter/field description using set notation. For example, if a parameter may only

have the value “a”, “b”, or “lemon”, its listed value type will be {a,b,lemon}.

MAC addresses
MAC addresses may be specified in the form

01:02:03:04:0A:0b

or in the form

01-02-03-04-0A-0b

where capitalization doesn’t matter, but field separator (: or -) must be consistent in a given address.

Authentication
OESS relies upon the hosting web server for authentication and application-wide authorization (i.e.,

whether or not someone is allowed to access OESS at all). The default Apache setup protects OESS using

HTTP Basic authentication, backed by an .htpasswd file. However, an instance may use a different

authentication mechanism, as configured on the web server. You should contact the administrator of

the system to determine which type of authentication should be used for programmatic access. For

instance, currently the services for the AL2S instance of OESS may be accessed from an endpoint using

Shibboleth browser-centric authentication (for human use of the OESS frontend with federated login) or

from an endpoint using HTTP Basic authentication (for easy programmatic use).

As mentioned in “Users” above, zero or more web-server-level usernames are mapped onto a single

OESS user; the possibility of the same principal needing to use different kinds of authentication in

different contexts is a driver of this layer of indirection.

Allowed operations (authorization)
Whether or not a certain user may perform an operation as a certain workgroup depends on several

factors, some of which are user-centric and some of which are more workgroup-centric.

 First off, a user is either active or decommissioned (decom); a decom user is not allowed to use

any methods.

 A user is either normal (read-write) or read-only; subject to other factors not forbidding an

operation, a normal user may use both RO methods (which alter neither the network itself nor

the OESS database) and RW methods (most of which do alter the network, the database, or

both), while read-only users may only use RO methods. Each method described below is marked

RO or RW.

 There is a concept of admin user, used below. An admin user is a user that belongs to at least

one workgroup of type admin.

 Methods fall into four classes regarding how they use workgroups to determine whether an

action is allowed (in all cases, assuming none of the above factors forbid the action):

o Methods in class have no further restrictions.

o Methods in class W require that the user making the request (1) belong in the

workgroup indicated by the workgroup_id parameter or (2) be an admin user.

o Methods in class C, which relate to editing circuits, require that the user making the

request be (1) an admin user or, failing that, (2) a member of the workgroup indicated

by the workgroup_id parameter, which in in case (2) must also

 be the owner of the circuit being operated upon

 be active and not decom (workgroups, like users, are either active or decom)

 not be of type demo.1

o Methods in class IN, which relate to interfaces, require that the user making the request

is (1) a member of the workgroup that owns the interface being operated on (which, for

these methods, is not necessarily the workgroup indicated by the workgroup_id

parameter) or (2) an admin user.

Each method described below is marked with its class.

Network information service (data.cgi)
Location: https://<hostname>/oess/services/data.cgi

Description: Provides information about the OESS instance and the network it manages. All of these

methods leave the OESS instance unchanged; indeed, with one exception (send_email), all of these

methods have no effect on the world beyond the fetching of data.

Method: get_workgroups RO
Returns a list of the workgroups the current user may work under, including IDs, names, and

administrative types.

No parameters.

Example request:

method: get_workgroups

Example response:

{

 "results": [// list of workgroups

 {

 "workgroup_id": "11", // numeric ID of workgroup

 "name": "GRNOC", // human-visible name of workgroup

 "type": "admin" // type of workgroup: {normal,admin,demo}

 },

 {

 "workgroup_id": "51",

 "name": "Indiana GigaPOP",

 "type": "normal"

 },

 {

 "workgroup_id": "831",

 "name": "CIC-UMich",

1 provisioning.cgi’s provision_circuit method doesn’t quite fit this particular sub-part of the ruleset – when
creating a circuit, it requires the group not to be named “Demo”, as opposed to not being of type demo; this is
planned to be changed to stock class C rules in a future release of OESS.

 "type": "normal"

 },

[...]

]

}

Method: get_maps RO W
Returns a JSON object representing the network layout, including the OESS-managed network and any

networks discovered from the global OSCARS topology. This information is used by the frontend to draw

network diagrams, and includes some information on resource-usage limits.

Parameter Required? Value type Description

workgroup_id yes integer Workgroup to gather data as; available-resource
counts will be specific to that workgroup

link_type no {openflow,mpls} If specified, limit the links returned to those of
the specified type

Example request:

method: get_maps

workgroup_id: 131

Example response:

{

 "results": [// a list of networks, one of which is the OESS-managed network (meta.local ==

1), and the others of which are derived from OSCARS topology data (meta.local == 0)

 {

 "nodes": { // the nodes in a network

 "sdn-sw.phoe.net.internet2.edu": { // name of the node, as field name

 "default_forward": "1", // whether to install an OpenFlow rule forwarding LLDP

packets on an admin-configured VLAN tag to the OESS OpenFlow controller

 "short_name": null, // name of the node as used in MPLS link discovery

 "tx_delay_ms": "1", // length of time to pause (in millisconds) between consecutive

pushes of OpenFlow rule changes to the node from OESS

 "model": null, // name of equipment model; used in selecting device-specific method

of MPLS management

 "sw_version": null, // equipment software version; used in selecting device-specific

method of MPLS management

 "default_drop": "1", // whether to install an OpenFlow rule to drop frames not

matched by other rules

 "node_id": "6701", // OESS numeric ID of node

 "dpid": "3f2718dd388a318", // OpenFlow DPID of node, in hexadecimal

 "tcp_port": "830", // TCP port used to communicate with node for MPLS-based

operation

 "node_long": "-112.047533", // longitude of node, in decimal degrees (east is

positive)

 "node_name": "sdn-sw.phoe.net.internet2.edu", // name of the node in OESS (or in the

OSCARS topology)

 "vlan_range": "100-2500", // VLAN range (or ranges, comma-separated) used for the

parts of OpenFlow circuits on trunk interfaces

 "in_maint": "no", // whether the node is in maintenance mode: {yes,no}

 "barrier_bulk": "1", // whether to send one OpenFlow barrier (per node) per overall

circuit operation (true) or to send a barrier after every flow modification (false)

 "node_lat": "33.440476", // latitude of node, in decimal degrees (north is positive)

 "mpls": "1", // whether MPLS-based operation is enabled

 "openflow": "1", // whether OpenFlow-based operation is enabled

 "end_epoch": null, // time at which the current maintenance on the node (if any) is

scheduled to end (if there is such a time), in seconds since the Unix epoch

 "max_static_mac_flows": "128", // maximum number of OpenFlow rules involving MAC

addresses that OESS will install on node

 "mgmt_addr": null, // IP address used to communicate with node for MPLS-based

operation

 "max_flows": "1000", // maximum number of OpenFlow rules OESS allows itself to

install on the node

 "number_available_endpoints": 1, // number of endpoint interfaces on the node

available to this workgroup for circuit endpoints

 "vendor": null // name of equipment vendor; used in selecting device-specific method

of MPLS management

 },

 "rtsw.losa.net.internet2.edu": {

 "default_forward": "1",

 "short_name": null,

 "tx_delay_ms": "1",

 "model": null,

 "sw_version": null,

 "default_drop": "0",

 "node_id": "9091",

 "dpid": "3b89c7b2b1",

 "tcp_port": "830",

 "node_long": "-118.295056",

 "node_name": "rtsw.losa.net.internet2.edu",

 "vlan_range": "100-2500",

 "in_maint": "no",

 "barrier_bulk": "1",

 "node_lat": "33.737916",

 "mpls": "1",

 "openflow": "1",

 "end_epoch": "1469790481",

 "max_static_mac_flows": "128",

 "mgmt_addr": null,

 "max_flows": "4000",

 "number_available_endpoints": 4,

 "vendor": null

 },

[...]

 },

 "links": { // the inter-node links in a network

 "sdn-sw.phoe.net.internet2.edu": [// the list of links with an endpoint on this node

 {

 "link_id": "941", // numeric ID of link

 "to": "rtsw.losa.net.internet2.edu", // name of node on other endpoint of link

 "openflow": "1", // whether this link may be used in OpenFlow-based circuits

 "link_capacity": "10000", // claimed data-rate capacity of the link, in Mbps

 "remote_urn": null, // will always be null

 "link_state": "up", // link state of the endpoint interfaces: {up,down,unknown}

 "mpls": "0", // whether this link may be used in MPLS-based circuits

 "link_name": "I2-LOSA-PHOE-100GE-09190", // name of the link

 "maint_epoch": null // time at which the current maintenance on the link (if any)

is scheduled to end (if there is such a time), in seconds since the Unix epoch

 },

 {

 "link_id": "2991",

 "to": "sdn-sw.tucs.net.internet2.edu",

 "openflow": "1",

 "link_capacity": "10000",

 "remote_urn": null,

 "link_state": "up",

 "mpls": "0",

 "link_name": "I2-PHOE-TUCS-100GE-11990",

 "maint_epoch": null

 }

],

 "rtsw.losa.net.internet2.edu": [

 { // this link shows up under sdn-sw.phoe as well

 "link_id": "941",

 "to": "sdn-sw.phoe.net.internet2.edu",

 "openflow": "1",

 "remote_urn": null,

 "link_capacity": "10000",

 "link_state": "up",

 "mpls": "0",

 "link_name": "I2-LOSA-PHOE-100GE-09190",

 "maint_epoch": null

 },

 {

 "link_id": "31",

 "to": "rtsw.sunn.net.internet2.edu",

 "openflow": "1",

 "remote_urn": null,

 "link_capacity": "10000",

 "link_state": "up",

 "mpls": "0",

 "link_name": "I2-LOSA-SUNN-100GE-07755",

 "maint_epoch": null

 },

[...]

],

[...]

 },

 "meta": { // information about the network as a whole

 "network_name": "al2s.net.internet2.edu", // name of the network in the OSCARS

topology

 "network_long": "0", // longitude of the network, in decimal degrees (east is

positive); defaults to 0

 "local": 1, // whether this is the network managed by this instance of OESS (true) or

a network derived from the OSCARS topology (false)

 "network_lat": "0" // latitude of the network, in decimal degrees (north is positive);

defaults to 0

 }

 },

 { // a network derived from OSCARS topology; less detail is available (for instance, no

links)

 "nodes": {

 "transpac.org-rtr.losa": {

 "node_long": "0",

 "node_name": "transpac.org-rtr.losa",

 "node_lat": "0",

 "number_available_endpoints": 0

 }

 },

 "meta": {

 "network_name": "transpac.org",

 "network_long": "0",

 "local": 0,

 "network_lat": "0"

 }

 },

[...]

]

}

Method: get_nodes RO
Returns the list of active nodes.

Parameter Required? Value type Description

type no {openflow,mpls,
all}

Whether to return the active nodes for which
OpenFlow operation is enabled, the active nodes
for which MPLS operation is enabled, or all active
nodes; if not specified, defaults to “all”

Example request:

method: get_nodes

Example response:

{

 "results": [// list of nodes

 {

 "default_forward": "1", // whether to install an OpenFlow rule forwarding LLDP packets

on an admin-configured VLAN tag to the OESS OpenFlow controller

 "loopback_address": null, // Loopback IP address of node; used with MPLS-based operation

 "short_name": null, // name of the node as used in MPLS link discovery

 "operational_state_mpls": "unknown", // whether OESS is connected to the node for MPLS

management: {up,down,unknown}

 "tx_delay_ms": "1", // length of time to pause (in millisconds) between consecutive

pushes of OpenFlow rule changes to the node from OESS

 "model": null, // name of equipment model; used in selecting device-specific method of

MPLS management

 "start_epoch": "1474607095", // time of the latest change in the node’s admin

configuration, in seconds since the Unix epoch

 "sw_version": null, // equipment software version; used in selecting device-specific

method of MPLS management

 "admin_state": "active", // state of the node in OESS: {planned,available,active,

maintenance,decom}

 "default_drop": "0", // whether to install an OpenFlow rule to drop frames not matched

by other rules

 "vlan_tag_range": "101-2500", // set of VLAN tags that may be used on trunk interfaces

for OpenFlow-based circuits

 "node_id": "9151", // numeric ID of node

 "latitude": "33.758537", // latitude of node, in decimal degrees (north is positive)

 "tcp_port": "830", // TCP port used to communicate with node for MPLS-based operation

 "dpid": "857273106838", // OpenFlow DPID of node, in decimal

 "pending_diff": "0", // whether there are MPLS-related configuration changes awaiting

manual approval by an admin

 "longitude": "-84.38759", // longitude of node, in decimal degrees (east is positive)

 "in_maint": "no", // whether the node is in maintenance mode: {yes,no}

 "name": "rtsw.atla.net.internet2.edu", // name of node

 "mpls": "0", // whether the node is configured to be used with MPLS

 "network_id": "1", // ID of the network the node belongs to; all nodes managed by OESS

will belong to the same network – other networks are only used in inter-domain operations

 "openflow": "1", // whether the node is configured to be used with OpenFlow

 "end_epoch": "-1", // will always be -1

 "max_static_mac_flows": "128", // maximum number of OpenFlow rules involving MAC

addresses that OESS will install on node

 "mgmt_addr": null, // IP address used to communicate with node for MPLS-based operation

 "max_flows": "4000", // maximum total number of OpenFlow rules that OESS will install on

node

 "send_barrier_bulk": "1", // whether to send one OpenFlow barrier (per node) per overall

circuit operation (true) or to send a barrier after every flow modification (false)

 "vendor": null, // name of equipment vendor; used in selecting device-specific method of

MPLS management

 "operational_state": "up" // whether the node is connected over OpenFlow to OESS :{up,

down,unknown}

 },

[...]

]

}

Method: get_node_interfaces RO
Returns the list of active interfaces on the given node.

Parameter Required? Value type Description

node yes string Name of the node for which to get information

workgroup_id no integer If specified, limit interfaces returned to ones the
workgroup owns or has an ACL rule on

show_down no boolean Whether or not to include interfaces that aren’t
currently link-up in the list; if not specified,
defaults to 0

show_trunk no boolean Whether or not to include trunk interfaces in the
list; if not specified, defaults to 0

type no {openflow,mpls,
all}

Whether to include only interfaces enabled for
OpenFlow operation, only interfaces enabled for
MPLS operation, or both; if not specified, defaults
to “all”

Example request:

method: get_node_interfaces

node: sdn-sw.phoe.net.internet2.edu

show_trunk: 1

Example response:

{

 "results": [// array of the active interfaces on the node

 {

 "workgroup_id": null, // numeric ID of owning workgroup, or null if no owner

 "int_role": "trunk", // {trunk,customer,unknown}

 "status": "up", // link state of the interface: {up,down,unknown}

 "interface_id": "55721", // numeric ID of interface in OESS

 "name": "et-7/0/0.0", // name of interface

 "port_number": "53177", // OpenFlow port number for interface, or null if there isn’t

one

 "description": "BACKBONE: LOSA-PHOE ", // textual description of interface

 "workgroup_name": null, // name of owning workgroup, or null if no owner

 "vlan_tag_range": "-1,1-4089", // VLAN tag range allowed for OpenFlow circuits

 "mpls_vlan_tag_range": null // VLAN tag range allowed for MPLS circuits

 },

 {

 "workgroup_id": "461",

 "int_role": "unknown",

 "status": "up",

 "interface_id": "55741",

 "name": "xe-5/0/0.0",

 "port_number": "51281",

 "description": "pas-tst.phoe, em1",

 "workgroup_name": "Performance Assurance",

 "vlan_tag_range": "-1,1-4089",

 "mpls_vlan_tag_range": null

 },

[...]

]
}

Method: get_interface RO
Returns information on a single interface.

Parameter Required? Value type Description

interface_id yes integer ID of the interface to retrieve information on

Example request:

method: get_interface

interface_id: 55741

Example response:

{

 "results": {

 "workgroup_id": "461", // numeric ID of owning workgroup, or null if there is no owning

workgroup

 "node_name": "sdn-sw.phoe.net.internet2.edu", // name of node interface is on

 "name": "xe-5/0/0.0", // name of interface

 "interface_id": "55741", // numeric ID of interface

 "port_number": "51281", // OpenFlow port number of interface, if it has one

 "description": "pas-tst.phoe, em1", // textual description of interface

 "workgroup_name": "Performance Assurance", // name of owning workgroup, if there is one

 "vlan_tag_range": "-1,1-4089", // VLAN tag range allowed for OpenFlow circuit endpoints on

the interface

 "node_id": "6701", // numeric ID of node interface is on

 "speed": "10000", // claimed speed of interface, in Mbps

 "role": "unknown", // {trunk,customer,unknown}

 "operational_state": "up" // the current link state of the interface on the node: {up,

down,unknown}

 }
}

Method: get_workgroup_interfaces RO W
Returns a list of the interfaces owned by a workgroup.

Parameter Required? Value type Description

workgroup_id yes integer ID of the workgroup to query

Example request:

method: get_workgroup_interfaces

workgroup_id: 51

Example response:

{

 "results": [// list of interfaces

 { // these fields are the same as in get_all_resources_for_workgroup, except that is_owner

and owning_workgroup are not present

 "interface_name": "et-2/3/0.0",

 "vlan_tag_range": "-1,1-4089",

 "remote_links": [],

 "node_name": "rtsw.chic.net.internet2.edu",

 "node_id": "9071",

 "interface_id": "261",

 "description": "I2-S08251 Indiana Gigapop",

 "operational_state": "up"

 },

[...]

]

}

Method: get_shortest_path RO
Returns the shortest contiguous path between the given nodes.

Parameter Required? Value type Description

type yes {openflow,mpls} The type of circuit to calculate a path for

node yes array of string The list of nodes to calculate the shortest path
between; there need to be two or more nodes in
the list

link no array of string A list of names of links to avoid using in the
computed path

Example request:

method: get_shortest_path

node: rtsw.chic.net.internet2.edu

node: sdn-sw.eqch.net.internet2.edu

node: sdn-sw.star.net.internet2.edu

type: openflow

link: I2-CHIC-EQCH-100GE-69888

Example response:

{

 "results": [// list of links in the shortest path

 {

 "link": "I2-CHIC-EQCH-100GE-55918" // name of link

 },

 {

 "link": "I2-CHIC-STAR-100GE-07743"

 }

]

}

Method: get_existing_circuits RO W
Returns the list of active circuits owned by a given workgroup or containing an endpoint on an interface

owned by the workgroup.

Parameter Required? Value type Description

workgroup_id yes integer ID of the workgroup

path_node_id no array of integer If included, limit the list of circuits to those that
traverse one or more of these nodes

endpoint_node_id no array of integer If included, limit the list of circuits to those that
have one of more of these nodes as endpoints

Example request:

method: get_existing_circuits

workgroup_id: 591

Example response:

{

 "results": [// list of circuits

 {

 "remote_requester": null, // (string) requester of this circuit; used with interdomain

circuits

 "last_modified_by": { // details of the user that last modified the circuit

 "status": "active", // administrative state of the user: {active,decom}

 "auth_id": "10515", // internal numeric ID associated with the username

 "family_name": "Doe", // user’s family name

 "email": "johnd@globalnoc.iu.edu", // user’s email address

 "is_admin": "0", // unused

 "user_id": "4653", // numeric ID of user

 "given_names": "John", // user’s given name

 "type": "normal", // read-write/read-only status of user: {normal,read-only}

 "auth_name": "johnd" // a username associated with the user

 },

 "external_identifier": null, // the external identifier (if any) associated with this

circuit

 "paths": { // the paths defined for this circuit

 "primary": { // indexed by the path’s type: {primary,backup,tertiary}

 "circuit_id": "306292", // numeric ID of circuit

 "path_id": "300922", // numeric ID of this path

 "path_instantiation_id": "1202262", // internal ID for the current state of the path

 "status": 1, // collective status of the links in this path; 0 for down, 1 for up, 2

for unknown

 "start_epoch": "1498600161", // time at which this path was last changed in some

way, in seconds since the Unix epoch

 "path_type": "primary", // the path’s type: {primary,backup,tertiary}

 "end_epoch": "-1", // will always be -1

 "path_state": "active", // state of the path in OESS: {active,available,deploying}

 "mpls_path_type": "none", // determines how the path is constructed in MPLS

(relevant to MPLS-based circuits only): {strict,loose,none}

 "links": [// the list of links (if any) in this path

 {

 "link_id": "3831", // numeric ID of link

 "name": "I2-CHIC-EQCH-100GE-55918" // name of link

 }

]

 },

 "backup": {

 "circuit_id": "306292",

 "path_id": "300932",

 "path_instantiation_id": "1202272",

 "status": 1,

 "start_epoch": "1498600161",

 "path_type": "backup",

 "end_epoch": "-1",

 "path_state": "available",

 "mpls_path_type": "none",

 "links": [

 {

 "link_id": "221",

 "name": "I2-CHIC-STAR-100GE-07743"

 },

 {

 "link_id": "3071",

 "name": "I2-EQCH-STAR-100GE-09299"

 }

]

 }

 },

 "state": "active", // administrative state of the circuit in OESS: {scheduled,deploying,

active,decom,looped,reserved,provisioned}

 "backup_links": [// list of the links (if any) in the backup path; same format as the

"links" field

 {

 "ip_z": null,

 "node_z": "rtsw.chic.net.internet2.edu",

 "node_a": "sdn-sw.star.net.internet2.edu",

 "name": "I2-CHIC-STAR-100GE-07743",

 "interface_z": "et-2/1/0.0",

 "port_no_a": "40929",

 "port_no_z": "43583",

 "ip_a": null,

 "interface_z_id": "281",

 "interface_a": "et-0/0/0.0",

 "interface_a_id": "871"

 },

 {

 "ip_z": null,

 "node_z": "sdn-sw.eqch.net.internet2.edu",

 "node_a": "sdn-sw.star.net.internet2.edu",

 "name": "I2-EQCH-STAR-100GE-09299",

 "interface_z": "et-4/0/0.0",

 "port_no_a": "36975",

 "port_no_z": "32695",

 "ip_a": null,

 "interface_z_id": "64671",

 "interface_a": "et-3/0/0.0",

 "interface_a_id": "45661"

 }

],

 "tertiary_links": [], // list of the links (if any) in the tertiary path; same format as

the "links" field

 "remote_url": null, // URL of creating OSCARS instance or NSI agent; for interdomain

circuits

 "created_on": "06/27/2017 21:44:25", // time at which the circuit was created

 "loop_node": null, // numeric ID of node (if any) at which the circuit is looped, that

is, at which frames received on an interface are sent back out that same interface instead of

being delivered to other links or endpoints

 "links": [// list of the links in the circuit’s primary path

 {

 "ip_z": null, // IP address of Z endpoint (used with MPLS)

 "node_z": "sdn-sw.eqch.net.internet2.edu", // name of node at Z endpoint

 "node_a": "rtsw.chic.net.internet2.edu", // name of node at A endpoint

 "name": "I2-CHIC-EQCH-100GE-55918", // name of the link

 "interface_z": "et-8/1/0.0", // name of interface at Z endpoint

 "port_no_a": "61586", // OpenFlow port number of interface at A endpoint

 "port_no_z": "47864", // OpenFlow port number of interface at Z endpoint

 "ip_a": null, // IP address of A endpoint (used with MPLS)

 "interface_z_id": "72111", // numeric ID of interface at Z endpoint

 "interface_a": "et-8/3/0.0", // name of interface at A endpoint

 "interface_a_id": "64261" // numeric ID of interface at A endpoint

 }

],

 "circuit_id": "306292", // the numeric ID of this circuit

 "static_mac": "0", // whether this is a static-MAC circuit (frames are routed to a

particular endpoint(s) based on their destination MAC addresses; which endpoint corresponds

with which MAC address(es) is statically configured and not auto-learned)

 "workgroup_id": "591", // numeric ID of the workgroup that owns this circuit

 "name": "GRNOC Server Test Ports-c9a9fcd8-5b81-11e7-89d1-3777b00d2fc4", // name of

circuit; auto-set by OESS to a unique value upon circuit creation, and intended to be used and

modified (if desired) by external systems

 "description": "doc test circuit", // textual description of circuit

 "endpoints": [// list of the circuit’s endpoint interfaces

 {

 "local": "1", // whether this endpoint node is on the OESS-managed network

 "node": "sdn-sw.eqch.net.internet2.edu", // name of the endpoint node

 "mac_addrs": [], // MAC addresses at this endpoint (for static-MAC circuits)

 "interface_description": "pas-tst.eqch, em2", // textual description of interface

 "port_no": "50989", // OpenFlow port number of endpoint interface

 "node_id": "7761", // numeric ID of endpoint node

 "urn": null, // OSCARS link URN for endpoint interface, if any

 "interface": "xe-5/0/1.0", // name of endpoint interface

 "tag": "555", // VLAN tag of endpoint

 "role": "unknown" // role of endpoint interface: {customer,trunk,unknown}

 },

 {

 "local": "1",

 "node": "rtsw.chic.net.internet2.edu",

 "mac_addrs": [],

 "interface_description": "pas-tst.chic em2 ",

 "port_no": "37410",

 "node_id": "9071",

 "urn": null,

 "interface": "xe-4/2/1.0",

 "tag": "557",

 "role": "unknown"

 }

],

 "workgroup": { // the details of the workgroup that owns this circuit

 "workgroup_id": "591", // workgroup’s numeric ID

 "status": "active", // is the workgroup active? {active,decom}

 "name": "GRNOC Server Test Ports", // workgroup’s name in OESS

 "max_circuit_endpoints": "8", // maximum number of endpoints a new (or newly-modified)

circuit may possess

 "description": "", // textual description of workgroup

 "max_circuits": "100", // maximum number of circuits the workgroup may own at one time

 "external_id": null, // string identifier available for use by external systems to

associate something with the workgroup (optional)

 "type": "normal", // workgroup type: {normal,demo,admin}

 "max_mac_address_per_end": "4" // maximum number of static MAC addresses this

workgroup may use on a single endpoint node

 },

 "active_path": "primary", // the path currently being used to forward frames: {primary,

backup,tertiary}

 "bandwidth": "0", // bandwidth nominally reserved for circuit, in Mbps

 "internal_ids": { // VLAN tags used on non-endpoint interfaces in the circuit

(meaningful for OpenFlow circuits only)

 "primary": { // tags used in the primary path

 "rtsw.chic.net.internet2.edu": { // indexed by node name

 "64261": "172" // key is interface ID, value is VLAN tag used on that interface

for traffic for this circuit

 },

 "sdn-sw.eqch.net.internet2.edu": {

 "72111": "172"

 }

 },

 "backup": { // tags used in the backup path

 "rtsw.chic.net.internet2.edu": {

 "281": "155"

 },

 "sdn-sw.star.net.internet2.edu": {

 "871": "170",

 "45661": "165"

 },

 "sdn-sw.eqch.net.internet2.edu": {

 "64671": "181"

 }

 }

 },

 "last_edited": "06/27/2017 21:49:21", // time when the latest change to the circuit

happened

 "user_id": "4651", // numeric ID of the user that made the latest change to the circuit;

1 if the latest change to the circuit was an automatic response to a system event (a link

outage, a maintenance, etc.)

 "restore_to_primary": "2", // if non-zero, if the circuit is using the backup or

tertiary path and the links that make up the primary path come back up, the number of minutes

to wait until switching back to using the primary path (assuming it stays up); if zero, do no

such restoration

 "type": "openflow", // type of the circuit: {openflow,mpls}

 "operational_state": "up", // current status of the circuit: {up,down,unknown}

 "created_by": { // details of the user that first created the circuit; same format as

"last_modified_by" field

 "status": "active",

 "auth_id": "10511",

 "family_name": "Doe",

 "email": "jdoe@globalnoc.iu.edu",

 "is_admin": "0",

 "user_id": "4651",

 "given_names": "Jane",

 "type": "normal",

 "auth_name": "jdoe"

 }

 },

[...]

]

}

Method: get_circuits_by_interface_id RO
Returns the list of circuits that use an interface.

Parameter Required? Value type Description

interface_id yes integer ID of the interface for which to get circuits

Example request:

method: get_circuits_by_interface_id

interface_id: 66151

Example response:

{

 "results": [// list of circuits

 {

 "circuit_id": "75931", // numeric ID of circuit

 "name": "I2-MISS2-SALT-VLAN-13287", // name of circuit; auto-set by OESS to a unique

value upon circuit creation, and intended to be used and modified (if desired) by external

systems

 "description": "PerfAssurance: miss2-xe-5/0/0.0 (seat) salt-e15/2 vlan 332" // textual

description of circuit

 },

 {

 "circuit_id": "98671",

 "name": "I2-MISS2-SALT-VLAN-47379",

 "description": "test2"

 },

[...]

]

}

Method: get_circuit_details RO
Returns all of the details for a given circuit, specified by its ID.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to fetch details for

Example request:

method: get_circuit_details

circuit_id: 75931

Example response:

{

 "results": { // fields are as in get_existing_circuits

 "remote_requester": null,

 "last_modified_by": {

 "status": "active",

 "auth_id": "341",

 "family_name": "Doe",

 "email": "jaked@globalnoc.iu.edu",

 "is_admin": "0",

 "user_id": "101",

 "given_names": "Jake",

 "type": "normal",

 "auth_name": "jaked"

 },

 "external_identifier": null,

 "paths": {

 "primary": {

 "circuit_id": "75931",

 "path_id": "75081",

 "path_instantiation_id": "845551",

 "status": 1,

 "start_epoch": "1467755733",

 "path_type": "primary",

 "end_epoch": "-1",

 "path_state": "active",

 "mpls_path_type": "none",

 "links": [

 {

 "link_id": "631",

 "name": "I2-SALT-SEAT-100GE-08998"

 },

 {

 "link_id": "3231",

 "name": "I2-MISS2-SEAT-100GE-13237"

 }

]

 }

 },

 "state": "active",

 "backup_links": [],

 "tertiary_links": [],

 "remote_url": null,

 "created_on": "10/02/2014 09:28:06",

 "loop_node": null,

 "links": [

 {

 "ip_z": null,

 "node_z": "rtsw.seat.net.internet2.edu",

 "node_a": "rtsw.salt.net.internet2.edu",

 "name": "I2-SALT-SEAT-100GE-08998",

 "interface_z": "et-5/0/0.0",

 "port_no_a": "41190",

 "port_no_z": "57426",

 "ip_a": null,

 "interface_z_id": "45921",

 "interface_a": "et-7/3/0.0",

 "interface_a_id": "45631"

 },

 {

 "ip_z": null,

 "node_z": "rtsw.seat.net.internet2.edu",

 "node_a": "sdn-sw.miss2.net.internet2.edu",

 "name": "I2-MISS2-SEAT-100GE-13237",

 "interface_z": "et-4/1/0.0",

 "port_no_a": "32695",

 "port_no_z": "55810",

 "ip_a": null,

 "interface_z_id": "46051",

 "interface_a": "et-4/0/0.0",

 "interface_a_id": "66161"

 }

],

 "circuit_id": "75931",

 "static_mac": "0",

 "workgroup_id": "461",

 "name": "I2-MISS2-SALT-VLAN-13287",

 "description": "PerfAssurance: miss2-xe-5/0/0.0 (seat) salt-e15/2 vlan 332",

 "endpoints": [

 {

 "local": "1",

 "node": "sdn-sw.miss2.net.internet2.edu",

 "mac_addrs": [],

 "interface_description": "pas-tst.miss2, em1",

 "port_no": "51281",

 "node_id": "7971",

 "urn": null,

 "interface": "xe-5/0/0.0",

 "tag": "332",

 "role": "unknown"

 },

 {

 "local": "1",

 "node": "rtsw.salt.net.internet2.edu",

 "mac_addrs": [],

 "interface_description": "pas-tst.salt em1",

 "port_no": "50989",

 "node_id": "9061",

 "urn": "urn:ogf:network:domain=al2s.net.internet2.edu:node=sdn-

sw.salt.net.internet2.edu:port=e15/2:link=*",

 "interface": "xe-5/0/1.0",

 "tag": "332",

 "role": "unknown"

 }

],

 "workgroup": {

 "workgroup_id": "461",

 "status": "active",

 "name": "Performance Assurance",

 "max_circuit_endpoints": "8",

 "description": "",

 "max_circuits": "400",

 "external_id": null,

 "type": "normal",

 "max_mac_address_per_end": "4"

 },

 "active_path": "primary",

 "bandwidth": "0",

 "internal_ids": {

 "primary": {

 "sdn-sw.miss2.net.internet2.edu": {

 "66161": "108"

 },

 "rtsw.seat.net.internet2.edu": {

 "45921": "105",

 "46051": "102"

 },

 "rtsw.salt.net.internet2.edu": {

 "45631": "102"

 }

 }

 },

 "last_edited": "07/05/2016 21:55:33",

 "user_id": "11",

 "restore_to_primary": "0",

 "type": "openflow",

 "operational_state": "up",

 "created_by": {

 "status": "active",

 "auth_id": "4941",

 "family_name": "Assurance",

 "email": "devnull@example.net",

 "is_admin": "0",

 "user_id": "1681",

 "given_names": "Performance",

 "type": "normal",

 "auth_name": "devnull"

 }

 }

}

Method: get_circuit_details_by_external_identifier RO
Returns all of the details for a circuit, specified by its external identifier. If more than one circuit has the

same external identifier, this will return details for one of them.

Parameter Required? Value type Description

external_identifier yes string External identifier given to a circuit

Example request:

method: get_circuit_details_by_external_identifier

external_identifier: al2s.net.internet2.edu-60421

Example response:

{

 "results": { // fields are as in get_existing_circuits

 "remote_requester": null,

 "last_modified_by": {

 "status": "active",

 "auth_id": "4431",

 "family_name": "Pseudo-user",

 "email": "oscars@example.globalnoc.iu.edu",

 "is_admin": "0",

 "user_id": "401",

 "given_names": "OSCARS",

 "type": "normal",

 "auth_name": "OSCARS"

 },

 "external_identifier": "al2s.net.internet2.edu-60421",

 "state": "decom",

 "backup_links": [],

 "tertiary_links": [],

 "remote_url": null,

 "created_on": "04/22/2015 16:49:25",

 "loop_node": null,

 "links": [

 {

 "ip_z": null,

 "node_z": "rtsw.chic.net.internet2.edu",

 "node_a": "sdn-sw.star.net.internet2.edu",

 "name": "I2-CHIC-STAR-100GE-07743",

 "interface_z": "et-2/1/0.0",

 "port_no_a": "40929",

 "port_no_z": "43583",

 "ip_a": null,

 "interface_z_id": null,

 "interface_a": "et-0/0/0.0",

 "interface_a_id": null

 }

],

 "circuit_id": "142291",

 "static_mac": "0",

 "workgroup_id": "1",

 "name": "OSCARS IDC-8897a498-e90f-11e4-932b-73e41ce00fa9",

 "description": "Test of IDC provisioning",

 "endpoints": [

 {

 "local": "1",

 "node": "rtsw.chic.net.internet2.edu",

 "mac_addrs": [],

 "interface_description": "pas-tst.chic em2 ",

 "port_no": "37410",

 "node_id": "9071",

 "urn": null,

 "interface": "xe-4/2/1.0",

 "tag": "224",

 "role": "unknown"

 },

 {

 "local": "1",

 "node": "sdn-sw.star.net.internet2.edu",

 "mac_addrs": [],

 "interface_description": "I2-S10492 CIC OmniPOP ",

 "port_no": "49028",

 "node_id": "9081",

 "urn": null,

 "interface": "et-1/0/0.0",

 "tag": "3804",

 "role": "unknown"

 },

 {

 "local": "0",

 "node": "oess.dcn.umnet.umich.edu-f10-dynes.dcn.umnet.umich.edu",

 "mac_addrs": [],

 "interface_description": "Te+0/1",

 "port_no": null,

 "node_id": "8221",

 "urn": "urn:ogf:network:domain=oess.dcn.umnet.umich.edu:node=f10-

dynes.dcn.umnet.umich.edu:port=Te+0/1:link=*",

 "interface": "Te+0/1",

 "tag": "238",

 "role": "unknown"

 }

],

 "workgroup": {

 "workgroup_id": "1",

 "status": "active",

 "name": "OSCARS IDC",

 "max_circuit_endpoints": "8",

 "description": "",

 "max_circuits": "100",

 "external_id": null,

 "type": "normal",

 "max_mac_address_per_end": "4"

 },

 "active_path": "primary",

 "bandwidth": "5",

 "internal_ids": {},

 "last_edited": "04/22/2015 17:03:03",

 "user_id": "401",

 "restore_to_primary": "0",

 "type": "openflow",

 "operational_state": "unknown",

 "created_by": {

 "status": "active",

 "auth_id": "4431",

 "family_name": "Pseudo-user",

 "email": "oscars@example.globalnoc.iu.edu",

 "is_admin": "0",

 "user_id": "401",

 "given_names": "OSCARS",

 "type": "normal",

 "auth_name": "OSCARS"

 }

 }

}

Method: get_circuit_scheduled_events RO
Returns the list of actions scheduled for a circuit.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to get actions for

Example request:

method: get_circuit_scheduled_events

circuit_id: 306302

Example response:

{

 "results": [

 {

 "activated": "2017-06-29 00:00:00", // when the action is scheduled to be performed

 "scheduled_action_id": "1962752", // numeric ID of scheduled action

 "scheduled": "2017-06-28 17:00:57", // when the action was created

 "username": "zcatlin", // a username associated with the user that scheduled the action

 "layout": "<opt name=\"\" action=\"remove\" version=\"1.0\" />\n", // XML description of

scheduled action

 "fullname": "Zachary Catlin", // name of user that scheduled the action

 "user_id": "1729", // numeric ID of user that scheduled the action

 "completed": null // when the action was completed; will always be null here

 }

]

}

Method: get_circuit_history RO
Returns the list of events (both user-initiated and network-driven) that have affected a circuit.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to get actions for

Example request:

method: get_circuit_history

circuit_id: 306302

Example response:

{

 "results": [// list of events

 {

 "ended": null, // when the next event occurred, if any has

 "layout": "", // always the empty string

 "activated": "2017-06-28 17:00:13", // when the event occurred

 "reason": "User requested circuit edit", // brief textual description of why the event

occurred

 "fullname": "Zachary Catlin", // name of user that performed this action (if user-

initiated)

 "scheduled": -1, // always -1

 "username": "zcatlin" // a username associated with the user that performed the action

(if user-initiated)

 },

 {

 "ended": "2017-06-28 17:00:13",

 "layout": "",

 "activated": "2017-06-28 16:57:10",

 "reason": "CHANGE PATH: User requested",

 "fullname": "Jane Doe",

 "scheduled": -1,

 "username": "jdoe"

 },

 {

 "ended": "2017-06-28 16:57:10",

 "layout": "",

 "activated": "2017-06-28 16:56:39",

 "reason": "Circuit Creation",

 "fullname": "Zachary Catlin",

 "scheduled": -1,

 "username": "zcatlin"

 }

]

}

Method: is_vlan_tag_available RO
Returns whether a given VLAN tag on a given interface is available for new use; also returns the type of

circuit that can use that tag.

Parameter Required? Value type Description

node yes string Name of the node

interface yes string Name of the interface on the node

vlan yes integer VLAN tag on the interface to check availability on

workgroup_id no integer Workgroup for which to see whether the VLAN
tag is available; if this isn’t specified, an
affirmative result is returned only if the VLAN tag
is available for all workgroups

Example request:

method: is_vlan_tag_available

node: rtsw.seat.net.internet2.edu

interface: xe-8/0/1.0

vlan: 206

workgroup_id: 5992

Example response:

{

 "results": [

 {

 "type": "openflow", // type of circuit that may use this VLAN tag: {openflow,mpls}; not

always present if available == 0

 "available": 1 // whether the VLAN tag may is available for use

 }

]

}

Method: get_workgroup_members RO W
Returns the list of users in a workgroup.

Parameter Required? Value type Description

workgroup_id yes integer ID of the workgroup to get members for

order_by no {given_names,
auth_name}

Order the users by their given2 names (the
default) or by their usernames

Example request:

method: get_workgroup_members

workgroup_id: 99

Example response:

{

 "results": [// the list of OESS users that belong to the workgroup

 {

 "email_address": "jdoe@globalnoc.iu.edu", // user’s email address

 "status": "active", // user’s status in OESS: {active,decom}

 "user_id": "341", // user’s numeric ID

 "family_name": "Doe", // user’s family name

 "auth_name": [// web-server-level username(s) for the user

 "jdoe"

2 Given, as opposed to family, name. In the Western convention for names, this is the first name.

],

 "first_name": "Jane" // user’s given name

 },

 {

 "email_address": "zcatlin@example.edu",

 "status": "active",

 "user_id": "1729",

 "family_name": "Catlin",

 "auth_name": [

 "zcatlin",

 "zcatlin2"

],

 "first_name": "Zachary"

 },

[...]

]
}

Method: generate_clr RO
Returns a human-readable circuit layout record (CLR) describing the given circuit.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to generate a CLR for

raw no boolean If set to 1, instead of the normal CLR view, return
a textual description of the OpenFlow rules used
to create the circuit (if the circuit is OpenFlow-
based). Defaults to 0.

Example request:

method: generate_clr

circuit_id: 306302

Example response:

{

 "results": {

 "clr": "Circuit: GRNOC Server Test Ports-c14c9c3e-5c22-11e7-89d1-3777b00d2fc4\nCreated by:

Zachary Catlin at 06/28/2017 16:56:39 for workgroup GRNOC Server Test Ports\nLast Modified By:

Zachary Catlin at 06/28/2017 17:00:13\n\nEndpoints: \n sdn-sw.miss2.net.internet2.edu - xe-

5/0/0.0 VLAN 406\n rtsw.seat.net.internet2.edu - xe-8/0/1.0 VLAN 360\n\nActive

Path:\nprimary\n\nPrimary Path:\n I2-MISS2-SEAT-100GE-13237\n\nBackup Path:\n I2-DENV-KANS-

100GE-07746\n I2-DENV-SALT-100GE-07747\n I2-SALT-SEAT-100GE-08998\n I2-MINN-MISS2-100GE-

09130\n I2-KANS-MINN-100GE-12675\n" // textual CLR

 }

}

Example request:

method: generate_clr

circuit_id: 306302

raw: 1

Example response:

{

 "results": {

 "clr": "OFFlowMod:\n DPID: 64649b693cc0 (sdn-sw.miss2.net.internet2.edu)\n Priority:

32768\n Match: VLAN: 154, IN PORT: 32695 (et-4/0/0.0)\n Actions: SET VLAN ID: 406\n

OUTPUT: 51281 (xe-5/0/0.0) \n\nOFFlowMod:\n DPID: 204e71ce76c0 (rtsw.seat.net.internet2.edu)\n

Priority: 32768\n Match: VLAN: 152, IN PORT: 55810 (et-4/1/0.0)\n Actions: SET VLAN ID: 360\n

OUTPUT: 47282 (xe-8/0/1.0) \n\nOFFlowMod:\n DPID: ac4bc84207c0 (sdn-

sw.denv.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 255, IN PORT: 40909 (et-8/0/0.0)\n

Actions: SET VLAN ID: 185\n OUTPUT: 32695 (et-4/0/0.0) \n\nOFFlowMod:\n DPID:

ac4bc84207c0 (sdn-sw.denv.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 189, IN PORT:

32695 (et-4/0/0.0)\n Actions: SET VLAN ID: 239\n OUTPUT: 40909 (et-8/0/0.0)

\n\nOFFlowMod:\n DPID: d404ff6c61c0 (rtsw.kans.net.internet2.edu)\n Priority: 32768\n Match:

VLAN: 239, IN PORT: 55810 (et-4/1/0.0)\n Actions: SET VLAN ID: 156\n OUTPUT: 47864

(et-8/1/0.0) \n\nOFFlowMod:\n DPID: d404ff6c61c0 (rtsw.kans.net.internet2.edu)\n Priority:

32768\n Match: VLAN: 156, IN PORT: 47864 (et-8/1/0.0)\n Actions: SET VLAN ID: 255\n

OUTPUT: 55810 (et-4/1/0.0) \n\nOFFlowMod:\n DPID: ac4bc88ebfc0 (sdn-

sw.minn.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 152, IN PORT: 32695 (et-4/0/0.0)\n

Actions: SET VLAN ID: 156\n OUTPUT: 40909 (et-8/0/0.0) \n\nOFFlowMod:\n DPID:

ac4bc88ebfc0 (sdn-sw.minn.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 156, IN PORT:

40909 (et-8/0/0.0)\n Actions: SET VLAN ID: 156\n OUTPUT: 32695 (et-4/0/0.0)

\n\nOFFlowMod:\n DPID: 307c5e94e440 (rtsw.salt.net.internet2.edu)\n Priority: 32768\n Match:

VLAN: 185, IN PORT: 55810 (et-4/1/0.0)\n Actions: SET VLAN ID: 133\n OUTPUT: 41190

(et-7/3/0.0) \n\nOFFlowMod:\n DPID: 307c5e94e440 (rtsw.salt.net.internet2.edu)\n Priority:

32768\n Match: VLAN: 130, IN PORT: 41190 (et-7/3/0.0)\n Actions: SET VLAN ID: 189\n

OUTPUT: 55810 (et-4/1/0.0) \n\nOFFlowMod:\n DPID: 64649b693cc0 (sdn-

sw.miss2.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 156, IN PORT: 53177 (et-

7/0/0.0)\n Actions: SET VLAN ID: 406\n OUTPUT: 51281 (xe-5/0/0.0) \n\nOFFlowMod:\n

DPID: 204e71ce76c0 (rtsw.seat.net.internet2.edu)\n Priority: 32768\n Match: VLAN: 133, IN

PORT: 57426 (et-5/0/0.0)\n Actions: SET VLAN ID: 360\n OUTPUT: 47282 (xe-8/0/1.0)

\n\nOFFlowMod:\n DPID: 64649b693cc0 (sdn-sw.miss2.net.internet2.edu)\n Priority: 32768\n

Match: VLAN: 406, IN PORT: 51281 (xe-5/0/0.0)\n Actions: SET VLAN ID: 152\n OUTPUT:

32695 (et-4/0/0.0) \n\nOFFlowMod:\n DPID: 204e71ce76c0 (rtsw.seat.net.internet2.edu)\n

Priority: 32768\n Match: VLAN: 360, IN PORT: 47282 (xe-8/0/1.0)\n Actions: SET VLAN ID: 154\n

OUTPUT: 55810 (et-4/1/0.0) \n\n" // textual description of OpenFlow rules used in circuit

 }
}

Method: get_all_node_status RO
Returns a list of all active nodes and their current operational status.

Parameter Required? Value type Description

type no {openflow,mpls,
all}

Whether to return the active nodes for which
OpenFlow operation is enabled, the active nodes
for which MPLS operation is enabled, or all active
nodes; if not specified, defaults to “all”

Example request:

method: get_all_node_status

Example response:

{

 "results": [// list of nodes

 { // fields for a node are just like in the get_nodes method

 "default_forward": "1",

 "loopback_address": null,

 "short_name": null,

 "operational_state_mpls": "unknown",

 "tx_delay_ms": "1",

 "model": null,

 "start_epoch": "1474607095",

 "sw_version": null,

 "admin_state": "active",

 "default_drop": "0",

 "vlan_tag_range": "101-2500",

 "node_id": "9151",

 "latitude": "33.758537",

 "tcp_port": "830",

 "dpid": "3087146175882",

 "pending_diff": "0",

 "longitude": "-84.38759",

 "in_maint": "no",

 "name": "rtsw.atla.net.internet2.edu",

 "mpls": "1",

 "network_id": "1",

 "openflow": "1",

 "end_epoch": "-1",

 "max_static_mac_flows": "128",

 "mgmt_addr": null,

 "max_flows": "4000",

 "send_barrier_bulk": "1",

 "vendor": null,

 "operational_state": "up"

 },

 {

 "default_forward": "1",

 "loopback_address": null,

 "short_name": null,

 "operational_state_mpls": "unknown",

 "tx_delay_ms": "1",

 "model": null,

 "start_epoch": "1468565197",

 "sw_version": null,

 "admin_state": "active",

 "default_drop": "0",

 "vlan_tag_range": "100-2500",

 "node_id": "9071",

 "latitude": "41.896504",

 "tcp_port": "830",

 "dpid": "46165784665004",

 "pending_diff": "0",

 "longitude": "-87.64306",

 "in_maint": "no",

 "name": "rtsw.chic.net.internet2.edu",

 "mpls": "1",

 "network_id": "1",

 "openflow": "1",

 "end_epoch": "-1",

 "max_static_mac_flows": "128",

 "mgmt_addr": null,

 "max_flows": "4000",

 "send_barrier_bulk": "1",

 "vendor": null,

 "operational_state": "up"

 },

[...]

]

}

Method: get_all_link_status RO
Returns a list of all active links usable by OpenFlow-based circuits and their current operational status.

Parameter Required? Value type Description

type no {openflow,mpls,
all}

Whether to return the active links usable by
OpenFlow-based circuits, the active links usable
by MPLS-based circuits, or both, respectively; if
not specified, defaults to “all”

Example request:

method: get_all_link_status

Example response:

{

 "results": [

 {

 "fv_status": "up", // whether the link is up, as determined by the Flow Verification

daemon: {up,down,unknown}

 "ip_z": null, // Z endpoint’s IP address (used for MPLS only)

 "in_maint": "no", // is the link currently in maintenance mode? {yes,no}

 "status": "up", // whether the link’s endpoint interfaces both indicated the link is up:

{up,down,unknown}

 "remote_urn": null, // will always be null

 "start_epoch": "1373693892", // time (in seconds since the Unix epoch) when the current

operational status of the link began

 "metric": "224", // numeric measure of cost of using this link in a circuit (e.g.,

length of link, or length/bandwidth, etc.); used by the get_shortest_path method

 "name": "I2-ALBA-BOST-100GE-09210", // name of the link

 "mpls": "0", // whether the link may be used in MPLS-based circuits

 "link_id": "961", // numeric ID of the link

 "openflow": "1", // whether the link may be used in OpenFlow-based circuits

 "vlan_tag_range": null, // VLAN tag range used with OpenFlow-based circuits using this

link; null means to use the trunk tag range of the link’s endpoint nodes

 "end_epoch": "-1", // time (in seconds since the Unix epoch) when the current

operational status of the link ended; will always be -1, which means “status is still current”

 "ip_a": null, // A endpoint’s IP address (used for MPLS only)

 "interface_z_id": "55761", // Z endpoint’s interface ID

 "link_state": "active", // Administrative state of the link in OESS: {planned,available,

active,maintenance,decom}

 "interface_a_id": "54401" // A endpoint’s interface ID

 },

 {

 "fv_status": "up",

 "ip_z": null,

 "in_maint": "no",

 "status": "up",

 "remote_urn": null,

 "start_epoch": "1373693892",

 "metric": "760",

 "name": "I2-ALBA-CLEV-100GE-07735",

 "mpls": "0",

 "link_id": "971",

 "openflow": "1",

 "vlan_tag_range": null,

 "end_epoch": "-1",

 "ip_a": null,

 "interface_z_id": "55771",

 "link_state": "active",

 "interface_a_id": "31"

 },

[...]

]

}

Method: get_all_resources_for_workgroup RO W
Returns the list of all interfaces the workgroup either owns or can otherwise provision circuits on,

included allowed VLAN tag ranges.

Parameter Required? Value type Description

workgroup_id yes integer ID of the workgroup to get the resource list for

Example request:

method: get_all_resources_for_workgroup

workgroup_id: 461

Example response:

{

 "results": [// list of interfaces

 {

 "interface_name": "et-4/3/0.0", // name of this interface

 "remote_links": [], // a set of (remote_urn, vlan_tag_range)s for inter-domain links

associated with this interface

 "node_name": "rtsw.atla.net.internet2.edu", // name of the node this interface is on

 "owning_workgroup": { // the details of the workgroup that owns this interface; not

always present if the same as workgroup_id

 "workgroup_id": "521", // workgroup’s numeric ID

 "status": "active", // is the workgroup active? {active,decom}

 "name": "SoX", // workgroup’s name in OESS

 "max_circuit_endpoints": "8", // maximum number of endpoints a new (or newly-modified)

circuit may possess

 "description": "", // textual description of workgroup

 "max_circuits": "100", // maximum number of circuits the workgroup may own at one time

 "external_id": "I2-S10678", // string identifier available for use by external systems

to associate something with the workgroup (optional)

 "type": "normal", // workgroup type: {normal,demo,admin}

 "max_mac_address_per_end": "4" // maximum number of static MAC addresses this

workgroup may use on a single endpoint node

 },

 "interface_id": "53931", // numeric ID of interface

 "description": "I2-S11441 SOX ", // textual description of interface

 "is_owner": 0, // whether workgroup_id is the owner of this interface

 "vlan_tag_range": "1650", // set of VLAN tags workgroup_id may use as an endpoint on

this interface

 "node_id": "9151", // numeric ID of the node this interface is on

 "operational_state": "up" // link-up state of this interface: {up,down,unknown}

 },

[...]

 {

 "interface_name": "et-1/0/0.0",

 "remote_links": [

 {

 "vlan_tag_range": null,

 "remote_urn": "urn:ogf:network:domain=net.wisc.edu:node=sw-

wisc:port=Te1/0/1:link=internet2"

 },

 {

 "vlan_tag_range": "3176-3179,3800-3809",

 "remote_urn": "urn:ogf:network:domain=oess.dcn.umnet.umich.edu:node=f10-

dynes.dcn.umnet.umich.edu:port=Te0/20:link=al2s"

 }

],

 "node_name": "sdn-sw.star.net.internet2.edu",

 "owning_workgroup": {

 "workgroup_id": "601",

 "status": "active",

 "name": "CIC OmniPOP",

 "max_circuit_endpoints": "8",

 "description": "",

 "max_circuits": "100",

 "external_id": "I2-S10691",

 "type": "normal",

 "max_mac_address_per_end": "4"

 },

 "interface_id": "59701",

 "description": "I2-S10492 CIC OmniPOP ",

 "is_owner": 0,

 "vlan_tag_range": "-1,1-945,947-4089",

 "node_id": "9081",

 "operational_state": "up"

 },

[...]

]

}

Method: send_email RO
Sends a message to the instance’s admin email address.

Parameter Required? Value type Description

subject yes string Subject of email

body yes string Body of email

Example request:

method: send_email

subject: Test Email

body: testing 1 2 3

Example response:

{

 "results": [

 {

 "sucess": 1 // [sic]; whether the email was successfully sent

 }

]

}

Method: get_link_by_name RO
Returns information about a link given the link’s name.

Parameter Required? Value type Description

name yes string Name of the link

Example request:

method: get_link_by_name

name: I2-ALBA-BOST-100GE-09210

Example response:

{

 "results": { // the following fields are a subset of those in the response from

get_all_link_status

 "fv_status": "up",

 "in_maint": "no",

 "status": "up",

 "remote_urn": null, // OSCARS URN of link; will be null for links in the OESS-managed

network

 "metric": "224",

 "name": "I2-ALBA-BOST-100GE-09210",

 "link_id": "961",

 "vlan_tag_range": null

 }

}

Method: is_within_mac_limit RO
Returns whether the specified MAC address(es) may all be added to an interface without going over

workgroup, node, etc. MAC-address limits.

Parameter Required? Value type Description

workgroup_id yes integer ID of workgroup to evaluate under

node yes string Name of node

interface yes string Name of interface on node

mac_address yes array of MAC
address

List of MAC addresses to be added to a circuit
termination on that interface

Example request:

method: is_within_mac_limit

workgroup_id: 461

node: rtsw.seat.net.internet2.edu

interface: xe-8/0/1.0

mac_address: 01-02-03-04-05-06

mac_address: 07:08:09:10:11:12

Example response:

{

 "error": null,

 "results": [

 {

 "explanation": null, // if verified == 0, a textual explanation of why the MAC

address(es) may not all be added

 "verified": 1 // whether the MAC address(es) may all be added

 }

]

}

Method: is_within_circuit_endpoint_limit RO
Returns whether or not a workgroup may create a circuit with the specified number of endpoints.

Parameter Required? Value type Description

workgroup_id yes integer ID of workgroup in question

endpoint_num yes integer Number of endpoints in proposed circuit

Example request:

method: is_within_circuit_endpoint_limit

workgroup_id: 461

endpoint_num: 23

Example response:

{

 "error": null,

 "results": [

 {

 "within_limit": 0 // whether the workgroup may create a circuit with endpoint_num

endpoints

 }

]

}

Method: is_within_circuit_limit RO
Returns whether or not a workgroup may create more circuits. The method name is slightly misleading:

for example, if a workgroup is set to have a limit of 10 circuits and currently has 10 circuits,

within_limit will be 0, as no more circuits may be created by the workgroup, even though it is still

within the limit.

Parameter Required? Value type Description

workgroup_id yes integer ID of workgroup to query

Example request:

method: is_within_circuit_limit

workgroup_id: 461

Example response:

{

 "error": null,

 "results": [

 {

 "within_limit": 1 // whether a new circuit can be created

 }

]
}

Method: get_vlan_tag_range RO
For the given interface, returns the set of VLAN tags the specified workgroup may use when creating

circuits as a comma-delimited list of ranges.

Parameter Required? Value type Description

workgroup_id yes integer ID of workgroup to query for

node yes string Name of node

interface yes string Name of interface on node

Example request:

method: get_vlan_tag_range

workgroup_id: 92

node: rtsw.salt.net.internet2.edu

interface: et-4/3/0.0

Example response:

{

 "results": [

 {

 "vlan_tag_range": "500,2000-2099,3551-3600" // set of allowed VLAN tags

 }

]
}

Provisioning service (provisioning.cgi)
Location: https://<hostname>/oess/services/provisioning.cgi

Description: Provides methods to add, modify, or remove circuits to/from the network.

Method: provision_circuit RW C
Adds or modifies a circuit on the network. If circuit_id is undefined or ‒1, then the circuit is added;

otherwise, the circuit with the specified ID is modified.

Parameter Required? Value type Description

circuit_id no integer The ID of the circuit to modify, if
specified and not ‒1; otherwise, a new
circuit is (attempted to be) created

workgroup_id yes integer ID of the workgroup to own the circuit
(if creating) or which owns the circuit
(if modifiying)

provision_time yes integer The time at which to add/modify the
circuit, in seconds since the Unix epoch;
the special value ‒1 means “now”

remove_time yes integer The time at which to automatically
remove the circuit, in seconds since the
Unix epoch; the special value ‒1 means
“never”

external_identifier no string If specified at circuit creation, the
external identifier to associate with this
circuit

description yes string A short description of the circuit; free-
form text

bandwidth no integer Reserved bandwidth for circuit, in
Mbps; not currently used

restore_to_primary no integer If specified and non-zero, the number
of minutes to wait after the primary
path becomes usable before
automatically switching the circuit to
using the primary path again; if not
specified or zero, don’t automatically
restore to primary path

static_mac no boolean Whether the circuit uses static MAC-
address routing; defaults to 0

link no array of string The names of the links to use for the
circuit’s primary path

(required if circuit is OpenFlow-based)

backup_link no array of string The names of the links to use for the
circuit’s backup path, if one is desired

node yes array of string The nth entry is the name of the node
for the circuit’s nth endpoint

interface yes array of string The nth entry is the name of the
interface for the circuit’s nth endpoint

tag yes array of
integer

The nth entry is the VLAN tag for the
circuit’s nth endpoint

endpoint_mac_address_num no array of
integer

Used with static-MAC circuits; the nth
entry is the number of MAC addresses
for the nth endpoint

mac_address no array of MAC
address

Used with static-MAC circuits; the list
of MAC addresses to associate with
endpoints; they should be arranged in
the same endpoint order as node,
interface, etc., but multiple MAC
addresses may be associated with an
endpoint, as controlled by
endpoint_mac_address_num

loop_node no string Specified and used only when doing
loopback testing of an existing circuit;
name of the node at which to hairpin
frames back to their source interface

state no string State of the circuit; defaults to “active”

remote_node no array of string Array of OSCARS URNs to use as
endpoints for IDC-based circuits

remote_tag no array of
integer

VLAN tags to be used on IDC endpoints;
the mth entry will be used for the mth
entry of remote_node

remote_url no string URL of creating OSCARS instance or NSI
agent, for interdomain circuits

remote_requester no string Requester of an interdomain circuit

Example request:

method: provision_circuit

workgroup_id: 491

provision_time: -1

remove_time: 1500100100

description: API Test Circuit

static_mac: 0

link: I2-CHIC-EQCH-100GE-55918

backup_link: I2-EQCH-STAR-100GE-09299

backup_link: I2-CHIC-STAR-100GE-07743

node: sdn-sw.eqch.net.internet2.edu

interface: xe-8/0/0.0

tag: 1433

node: rtsw.chic.net.internet2.edu

interface: xe-4/2/1.0

tag: 3801

Example response:

{

 "results": {

 "circuit_id": "306322", // numeric ID of the circuit

 "success": 1 // whether the circuit was successfully created/modified

 }
}

Method: fail_over_circuit RW C
If a circuit is using its primary path, change it to use its backup path (if it has one); if the circuit is using

its backup path, change it to use its primary path.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to change active path on

workgroup_id yes integer ID of the workgroup to perform this action as

force no boolean Whether or not to change paths even if the
alternate path isn’t currently up; defaults to 0

Example request:

method: fail_over_circuit

circuit_id: 306322

workgroup_id: 491

Example response:

{

 "results": [

 {

 "success": 1 // whether the circuit’s path was actually changed

 }

]

}

Method: reprovision_circuit RW C
Removes and re-installs the circuit on the network; can be useful for troubleshooting.

Parameter Required? Value type Description

circuit_id yes integer ID of circuit to re-provision

workgroup_id yes integer ID of workgroup to run this as

type no {openflow,mpls} Unused

Example request:

method: reprovision_circuit

circuit_id: 306322

workgroup_id: 491

Example response:

{

 "results": [

 {

 "success": 1 // whether the circuit was successfully reprovisioned

 }

]
}

Method: remove_circuit RW C
Removes a circuit from the network (or schedules such removal), and returns success if the circuit has

been removed successfully or is scheduled for removal from the network.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to remove

workgroup_id yes integer ID of the workgroup to perform this operation as

type no {openflow,mpls} Unused

remove_time yes integer Time to remove the circuit, in seconds since the
Unix epoch; ‒1 means “now”

force no boolean Whether or not to decommission the circuit in
OESS’s database in the case that removing the
circuit’s configuration from the nodes fails for
some reason

Example request:

method: remove_circuit

circuit_id: 306322

workgroup_id: 491

remove_time: -1

Example response:

{

 "results": [

 {

 "success": 1 // whether the circuit was successfully removed

 }

]

}

Measurement service (measurement.cgi)
Location: https://<hostname>/oess/services/measurement.cgi

Description: Provides network usage data about circuits.

Method: get_circuit_data RO
Returns network usage data relating to a given circuit on a given interface. NOTE: the returned data

does not follow the usual JSON format.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to get usage data for

node no string Name of the node; if neither this nor link is
specified, a node is chosen at random

interface no string Name of the interface on the node to show data
for; if not specified, an interface is chosen at
random

link no string Name of a link involved in the circuit; if specified,
node and interface are ignored, and data will be
shown for one of the link’s endpoint interfaces

start yes unsigned integer Start time of data to retrieve, in seconds since
the Unix epoch

end yes unsigned integer End time of data to retrieve, in seconds since the
Unix epoch

Example request:

method: get_circuit_data

circuit_id: 43224

node: sdn-sw.denv.net.internet2.edu

interface: eth5/2

start: 1498679067

end: 1498679667

Example response:

{

 "interfaces": [// names of the interfaces on the same node that are involved in the circuit

 "eth5/2",

 "eth3/5"

],

 "interface": "eth5/2", // name of the interface the usage data is for

 "node": "sdn-sw.denv.net.internet2.edu", // name of the node the usage data is for

 "results": [// array of different data values

 {

 "name": "Input (Bps)", // name of the data value in question

 "data": [// array of (timestamp, data at timestamp) pairs

 [1498679160, 207157.893736168],

 [1498679280, 56469466.0722517],

 [1498679400, 59934688.3466288],

 [1498679520, 241695.117964083],

 [1498679640, 227999.937238485]

]

 },

 {

 "name": "Output (Bps)",

 "data": [

 [1498679160, 195704.405191311],

 [1498679280, 3377258.34905497],

 [1498679400, 125926053.868564],

 [1498679520, 190207.599757221],

 [1498679640, 191997.390291729]

]

 }

]

}

Monitoring service (monitoring.cgi)
Location: https://<hostname>/oess/services/monitoring.cgi

Description: Provides information about the current status of nodes for the use of external monitoring

systems.

Method: get_node_status RO
Returns whether the node is currently connected to the OESS OpenFlow controller.

Parameter Required? Value type Description

node yes string Name of the node

Example request:

method: get_node_status

node: sdn-sw.minn.net.internet2.edu

Example response:

{

 "results": {

 "status": 1, // whether the node is connected to OESS

 "node": "sdn-sw.minn.net.internet2.edu"

 }
}

Method: get_mpls_node_status RO
Returns whether OESS is connected to the node for purposes of MPLS management.

Parameter Required? Value type Description

node yes string Name of the node

Example request:

method: get_mpls_node_status

node: sdn-sw.minn.net.internet2.edu

Example response:

{

 "results": {

 "status": 0, // whether OESS is connected to the node

 "node": "sdn-sw.minn.net.internet2.edu"

 }

}

Method: get_rules_on_node RO
Returns information on the current number of OpenFlow rules on a switch and the configured maximum

number of OESS-generated rules allowed for that switch.

Parameter Required? Value type Description

node yes string Name of the node to get information on

Example request:

method: get_rules_on_node

node: rtsw.chic.net.internet2.edu

Example response:

{

 "results": { // hopefully, these fields are easy to understand

 "maximum_allowed_rules_on_switch": "4000",

 "rules_currently_on_switch": 278,

 "node": "rtsw.chic.net.internet2.edu"

 }
}

Traceroute service (traceroute.cgi)
Location: https://<hostname>/oess/services/traceroute.cgi

Description: interface to run and query OESS’s “Trace Circuit Path” functionality, which is like a

traceroute, but operates at layer 2 and traces frames through the nodes making up an OpenFlow-based

OESS circuit.

The API workflow for a traceroute is:

1. Use init_circuit_traceroute to start a traceroute.

2. Periodically poll the status of the traceroute using get_circuit_traceroute until it finishes

or times out.

Method: init_circuit_traceroute RW C
Request a traceroute to be performed on a circuit, starting from the specified endpoint.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit to do the traceroute on

workgroup_id yes integer ID of the workgroup to perform the traceroute as

node yes string Endpoint node to send traceroute frames from

interface yes string Endpoint interface on node to send traceroute
frames from

Example request:

method: init_circuit_traceroute

workgroup_id: 491

circuit_id: 306312

node: sdn-sw.miss2.net.internet2.edu

interface: xe-5/0/0.0

Example response:

{

 "results": [

 {

 "success": "1" // whether the traceroute was actually started

 }

]
}

Method: get_circuit_traceroute RW C
Returns the status of the currently-running (or, if none is running, last-run) traceroute on a circuit.

Parameter Required? Value type Description

circuit_id yes integer ID of the circuit whose traceroute we want to
know about

workgroup_id yes integer ID of the workgroup to run as

Example request:

method: get_circuit_traceroute

workgroup_id: 491

circuit_id: 306312

Example response:

{

 "results": [// zero- or one-element array

 {

 "interfaces_traversed": [// names of interfaces the frames have been traced through, in

order

 "et-4/1/0.0",

 "et-7/3/0.0",

 "et-7/0/0.0"

],

 "end_epoch": null, // when the traceroute completed, timed out, or failed, in seconds

since the Unix epoch

 "remaining_endpoints": 1, // the number of endpoint nodes yet to be reached

 "nodes_traversed": [// names of the nodes the frames have been traced through;

nodes_traversed[i] corresponds with interfaces_traversed[i]

 "rtsw.seat.net.internet2.edu",

 "rtsw.salt.net.internet2.edu",

 "sdn-sw.reno.net.internet2.edu"

],

 "ttl": 27, // number of remaining link hops allowed (like an IP packet’s TTL)

 "status": "active", // status of the traceroute: {active,Complete,timeout,timed out,

invalidated}

 "start_epoch": 1498684459 // when the traceroute was started, in seconds since the Unix

epoch

 }

]

}

Workgroup/ACL management service (workgroup_manage.cgi)
Location: https://<hostname>/oess/services/workgroup_manage.cgi

Description: Provides information about workgroups and interface ACLs, as well as methods to

add/modify/remove interface ACLs.

Method: get_all_workgroups RW
Returns the list of all workgroups.

No parameters.

Example request:

method: get_all_workgroups

Example response:

{

 "results": [// list of workgroups

 {

 "workgroup_id": "121", // numeric ID of workgroup

 "external_id": null, // string identifier available for use by external systems to

associate something with the workgroup (optional)

 "name": "AutoR&E", // (OESS) name of workgroup

 "type": "normal" // workgroup type: {normal,admin,demo}

 },

 {

 "workgroup_id": "1881",

 "external_id": "I2-S88888",

 "name": "BioRuritania",

 "type": "normal"

 },

 {

 "workgroup_id": "42",

 "external_id": null,

 "name": "Demo",

 "type": "demo"

 },

 {

 "workgroup_id": "101",

 "external_id": null,

 "name": "OESS Admins",

 "type": "admin"

 },

[...]

]

}

Method: get_acls RW
Returns a list of interface ACLs.

Parameter Required? Value type Description

interface_id no integer If specified, limits returned ACLs to those for the
interface with the given ID

interface_acl_id no integer If specified, only returns the ACL with the given ID

Example request:

method: get_acls

interface_id: 60551

Example response:

{

 "results": [// list of ACLs matching parameter criteria

 {

 "interface_name": "xe-4/2/0.0", // name of the interface the ACL applies to

 "vlan_end": "4089", // ending VLAN tag (inclusive) affected by this ACL

 "vlan_start": "1", // starting VLAN tag (inclusive) affected by this ACL

 "owner_workgroup_name": "Performance Assurance", // name of the workgroup that owns the

interface

 "workgroup_id": "491", // numeric ID of the workgroup this ACL applies to

 "interface_id": "60551", // numeric ID of the interface the ACL applies to

 "interface_acl_id": "13451", // numeric ID of this ACL

 "workgroup_name": "Performance Assurance", // name of the workgroup this ACL applies to

 "eval_position": "10", // see add_acl method for description

 "owner_workgroup_id": "491", // numeric ID of workgroup that owns the interface

 "notes": null, // any textual notes about this ACL

 "allow_deny": "allow" // whether this ACL permits or denies access to the VLAN tag

range: {allow,deny}

 },

 {

 "interface_name": "xe-4/2/0.0",

 "vlan_end": "3003",

 "vlan_start": "3003",

 "owner_workgroup_name": "Performance Assurance",

 "workgroup_id": "337",

 "interface_id": "60551",

 "interface_acl_id": "16441",

 "workgroup_name": "GlobalNOC Server Test Ports",

 "eval_position": "20",

 "owner_workgroup_id": "491",

 "notes": null,

 "allow_deny": "allow"

 },

 {

 "interface_name": "xe-4/2/0.0",

 "vlan_end": "4089",

 "vlan_start": "1",

 "owner_workgroup_name": "Performance Assurance",

 "workgroup_id": "101",

 "interface_id": "60551",

 "interface_acl_id": "28351",

 "workgroup_name": "OESS Admins",

 "eval_position": "30",

 "owner_workgroup_id": "491",

 "notes": null,

 "allow_deny": "allow"

 }

]

}

Method: add_acl RW IN
Adds an ACL for a specific interface and a specific workgroup. Note that ACLs for an interface are

evaluated in order of increasing eval_position, and evaluation uses a first-match-wins rule. So, if

workgroup X has two ACLs on an interface, one with eval_position 20 that allows VLAN tags 1000‒1999

and one with eval_position 10 that denies VLAN tags 1500‒1509, the workgroup would not be allowed

to use VLAN tag 1504 on that interface, as the ‘deny’ rule matches first. If the deny rule had

eval_position 30 instead, the workgroup would be allowed to use VLAN tag 1504.

Parameter Required? Value type Description

interface_id yes integer ID of the interface to add an ACL for

eval_position no integer Position of the new ACL in the order of
evaluation. Must not be used by an existing ACL.
If not specified, the ACL will be given a position
after any existing ACLs for the interface.

workgroup_id no integer ID of the workgroup the ACL applies to; if not
specified or set to zero, the ACL applies to all
workgroups

allow_deny yes {allow,deny} Whether the ACL grants or denies access to the
VLAN tag range in question

vlan_start yes integer First VLAN tag in the range affected by the ACL

vlan_end no integer Last VLAN tag in the range affected by the ACL; if
not specified, defaults to vlan_start

notes no string Short, human-readable note about the ACL

Example request:

method: add_acl

interface_id: 60551

eval_position: 15

workgroup_id: 337

allow_deny: allow

vlan_start: 504

vlan_end:521

notes: Test ACL

Example response:

{

 "results": [

 {

 "success": 1, // whether the ACL was actually added

 "interface_acl_id": "32492" // numeric ID of ACL

 }

]

}

Method: update_acl RW IN
Updates an interface ACL. See the documentation for add_acl for details about ACL semantics and user

requirements.

Parameter Required? Value type Description

interface_acl_id yes integer ID of the interface ACL to modify

interface_id yes integer ID of the interface the ACL applies to; may not be
changed

eval_position yes integer New position of the new ACL in the order of
evaluation

workgroup_id no integer ID of the workgroup the ACL applies to; if not
specified or set to zero, the ACL applies to all
workgroups

allow_deny yes {allow,deny} Whether the ACL grants or denies access to the
VLAN tag range in question

vlan_start yes integer First VLAN tag in the range affected by the ACL

vlan_end no integer Last VLAN tag in the range affected by the ACL; if
not specified, defaults to vlan_start

notes no string Short, human-readable note about the ACL

Example request:

method: update_acl

interface_acl_id: 32492

interface_id: 60551

eval_position: 10

workgroup_id: 337

allow_deny: allow

vlan_start: 504

vlan_end: 599

notes: Test ACL

Example response:

{

 "results": [

 {

 "success": 1 // whether or not the ACL was actually updated

 }

]

}

Method: remove_acl RW IN
Removes an existing ACL. User requirements are the same as for add_acl.

Parameter Required? Value type Description

interface_acl_id yes integer ID of the ACL to remove

Example request:

method: remove_acl

interface_acl_id: 32492

Example response:

{

 "results": [

 {

 "success": 1 // whether the ACL was actually removed

 }

]

}

